skip to main content


Search for: All records

Creators/Authors contains: "D’Silva, Jordan C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We use the Galaxy and Mass Assembly (GAMA) and the Deep Extragalactic Visible Legacy Survey (DEVILS) observational data sets to calculate the cosmic star formation rate (SFR) and active galactic nuclei (AGN) bolometric luminosity history (CSFH/CAGNH) over the last 12.5 billion years. SFRs and AGN bolometric luminosities were derived using the spectral energy distribution fitting code ProSpect, which includes an AGN prescription to self-consistently model the contribution from both AGN and stellar emission to the observed rest-frame ultra-violet to far-infrared photometry. We find that both the CSFH and CAGNH evolve similarly, rising in the early Universe up to a peak at look-back time ≈10 Gyr (z ≈ 2), before declining towards the present day. The key result of this work is that we find the ratio of CAGNH to CSFH has been flat ($\approx 10^{42.5}\, \mathrm{erg \, s^{-1}\, {\rm M}_{\odot }^{-1}\, yr}$) for 11 Gyr up to the present day, indicating that star formation and AGN activity have been coeval over this time period. We find that the stellar masses of the galaxies that contribute most to the CSFH and CAGNH are similar, implying a common cause, which is likely gas inflow. The depletion of the gas supply suppresses cosmic star formation and AGN activity equivalently to ensure that they have experienced similar declines over the last 10 Gyr. These results are an important milestone for reconciling the role of star formation and AGN activity in the life cycle of galaxies.

     
    more » « less
  2. ABSTRACT

    We use two independent galaxy-formation simulations, flares, a cosmological hydrodynamical simulation, and shark, a semi-analytic model, to explore how well the JWST will be able to uncover the existence and parameters of the star-forming main sequence (SFS) at z = 5 → 10, i.e. shape, scatter, normalization. Using two independent simulations allows us to isolate predictions (e.g. stellar mass, star formation rate, SFR, luminosity functions) that are robust to or highly dependent on the implementation of the physics of galaxy formation. Both simulations predict that JWST can observe ≥70–90 per cent (for shark and flares, respectively) of galaxies up to z ∼ 10 (down to stellar masses of ${\approx}10^{8.3}\rm M_{\odot }$ and SFRs of ${\approx}10^{0.5}{\rm M}_{\odot }\,{\rm yr}^{-1}$) in modest integration times and given current proposed survey areas (e.g. the Web COSMOS 0.6 deg2) to accurately constrain the parameters of the SFS. Although both simulations predict qualitatively similar distributions of stellar mass and SFR. There are important quantitative differences, such as the abundance of massive, star-forming galaxies with flares predicting a higher abundance than shark; the early onset of quenching as a result of black hole growth in flares (at z ≈ 8), not seen in shark until much lower redshifts; and the implementation of synthetic photometry with flares predicting more JWST-detected galaxies (∼90 per cent) than shark (∼70 per cent) at z = 10. JWST observations will distinguish between these models, leading to a significant improvement upon our understanding of the formation of the very first galaxies.

     
    more » « less
  3. Abstract

    The Time Domain Field (TDF) near the North Ecliptic Pole in JWST’s continuous-viewing zone will become a premier “blank field” for extragalactic science. JWST/NIRCam data in a 16 arcmin2portion of the TDF identify 4.4μm counterparts for 62 of 63 3 GHz sources withS(3 GHz) > 5μJy. The one unidentified radio source may be a lobe of a nearby Seyfert galaxy, or it may be an infrared-faint radio source. The bulk properties of the radio-host galaxies are consistent with those found by previous work: redshifts range from 0.14–4.4 with a median redshift of 1.33. The radio emission arises primarily from star formation in ∼2/3 of the sample and from an active galactic nucleus (AGN) in ∼1/3, but just over half the sample shows evidence for an AGN either in the spectral energy distribution or by radio excess. All but three counterparts are brighter than magnitude 23 AB at 4.4μm, and the exquisite resolution of JWST identifies correct counterparts for sources for which observations with lower angular resolution would misidentify a nearby bright source as the counterpart when the correct one is faint and red. Up to 11% of counterparts might have been unidentified or misidentified absent NIRCam observations.

     
    more » « less
  4. Abstract

    Using the first epoch of four-band NIRCam observations obtained by the James Webb Space Telescope (JWST) Prime Extragalactic Areas for Reionization and Lensing Science Program in the Spitzer IRAC Dark Field, we search for F150W and F200W dropouts. In 14.2 arcmin2, we have found eight F150W dropouts and eight F200W dropouts, all brighter than 27.5 mag (the brightest being ∼24 mag) in the band to the red side of the break. As they are detected in multiple bands, these must be real objects. Their nature, however, is unclear, and characterizing their properties is important for realizing the full potential of JWST. If the observed color decrements are due to the Lyman break, these objects should be atz≳ 11.7 andz≳ 15.4, respectively. The color diagnostics show that at least four F150W dropouts are far away from the usual contaminators encountered in dropout searches (red galaxies at much lower redshifts or brown dwarf stars). While the diagnostics of the F200W dropouts are less certain due to the limited number of passbands, at least one of them is likely not a known type of contaminant, and the rest are consistent with either high-redshift galaxies with evolved stellar populations or old galaxies atz≈ 3–8. If a significant fraction of our dropouts are indeed atz≳ 12, we have to face the severe problem of explaining their high luminosities and number densities. Spectroscopic identifications of such objects are urgently needed.

     
    more » « less
  5. Abstract We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μ m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μ m. PEARLS is designed to be of lasting benefit to the community. 
    more » « less